In spaceflight, an orbital maneuver (otherwise known as a burn) is the use of propulsion systems to change the orbit of a spacecraft. For spacecraft far from Earth, an orbital maneuver is called a deep-space maneuver (DSM).
When a spacecraft is not conducting a maneuver, especially in a transfer orbit, it is said to be coasting.
The delta-v for all the expected maneuvers are estimated for a mission are summarized in a delta-v budget. With a good approximation of the delta-v budget designers can estimate the propellant required for planned maneuvers.
In the physical world no truly instantaneous change in velocity is possible as this would require an "infinite force" applied during an "infinitely short time" but as a mathematical model it in most cases describes the effect of a maneuver on the orbit very well.
The off-set of the velocity vector after the end of real burn from the velocity vector at the same time resulting from the theoretical impulsive maneuver is only caused by the difference in gravitational force along the two paths (red and black in figure 1) which in general is small.
In the planning phase of space missions designers will first approximate their intended orbital changes using impulsive maneuvers that greatly reduces the complexity of finding the correct orbital transitions.
Another term is finite burn, where the word "finite" is used to mean "non-zero", or practically, again: over a longer period.
For a few space missions, such as those including a space rendezvous, high fidelity models of the trajectories are required to meet the mission goals. Calculating a "finite" burn requires a detailed model of the spacecraft and its thrusters. The most important of details include: mass, center of mass, moment of inertia, thruster positions, thrust vectors, thrust curves, specific impulse, thrust centroid offsets, and fuel consumption.
The Oberth effect is used in a powered flyby or Oberth maneuver where the application of an impulse, typically from the use of a rocket engine, close to a gravitational body (where the gravity potential is low, and the speed is high) can give much more change in kinetic energy and final speed (i.e. higher specific energy) than the same impulse applied further from the body for the same initial orbit.
Since the Oberth maneuver happens in a very limited time (while still at low altitude), to generate a high impulse the engine necessarily needs to achieve high thrust (impulse is by definition the time multiplied by thrust). Thus the Oberth effect is far less useful for low-thrust engines, such as .
Historically, a lack of understanding of this effect led investigators to conclude that interplanetary travel would require completely impractical amounts of propellant, as without it, enormous amounts of energy are needed.
The "assist" is provided by the motion (orbital angular momentum) of the gravitating body as it pulls on the spacecraft. The technique was first proposed as a mid-course maneuver in 1961, and used by interplanetary probes from Mariner 10 onwards, including the two Voyager program probes' notable fly-bys of Jupiter and Saturn.
The orbital maneuver to perform the Hohmann transfer uses two engine impulses which move a spacecraft onto and off the transfer orbit. This maneuver was named after Walter Hohmann, the Germany scientist who published a description of it in his 1925 book Die Erreichbarkeit der Himmelskörper ( The Accessibility of Celestial Bodies).Walter Hohmann, (Washington: NASA Technical Translation F-44, 1960). Hohmann was influenced in part by the German science fiction author Kurd Laßwitz and his 1897 book Two Planets.
The bi-elliptic transfer consists of two half . From the initial orbit, a delta-v is applied boosting the spacecraft into the first transfer orbit with an apoapsis at some point away from the central body. At this point, a second delta-v is applied sending the spacecraft into the second elliptical orbit with periapsis at the radius of the final desired orbit, where a third delta-v is performed, injecting the spacecraft into the desired orbit.
While they require one more engine burn than a Hohmann transfer and generally requires a greater travel time, some bi-elliptic transfers require a lower amount of total delta-v than a Hohmann transfer when the ratio of final to initial semi-major axis is 11.94 or greater, depending on the intermediate semi-major axis chosen.
The idea of the bi-elliptical transfer trajectory was first published by Ary Sternfeld in 1934.Sternfeld A., Sur les trajectoires permettant d'approcher d'un corps attractif central à partir d'une orbite keplérienne donnée. - Comptes rendus de l'Académie des sciences (Paris), vol. 198, pp. 711 - 713.
Low energy transfer are also known as weak stability boundary trajectories, or ballistic capture trajectories.
Low energy transfers follow special pathways in space, sometimes referred to as the Interplanetary Transport Network. Following these pathways allows for long distances to be traversed for little expenditure of delta-v.
In general, inclination changes can require a great deal of delta-v to perform, and most mission planners try to avoid them whenever possible to conserve fuel. This is typically achieved by launching a spacecraft directly into the desired inclination, or as close to it as possible so as to minimize any inclination change required over the duration of the spacecraft life.
Maximum efficiency of inclination change is achieved at apoapsis, (or apogee), where orbital velocity is the lowest. In some cases, it may require less total delta v to raise the spacecraft into a higher orbit, change the orbit plane at the higher apogee, and then lower the spacecraft to its original altitude.
In the constant-thrust trajectory,W. E. Moeckel, Trajectories with Constant Tangential Thrust in Central Gravitational Fields, Technical Report R-63, NASA Lewis Research Center, 1960 (accessed 26 March 2014) the vehicle's acceleration increases during thrusting period, since the fuel use means the vehicle mass decreases. If, instead of constant thrust, the vehicle has constant acceleration, the engine thrust must decrease during the trajectory.
This trajectory requires that the spacecraft maintain a high acceleration for long durations. For interplanetary transfers, days, weeks or months of constant thrusting may be required. As a result, there are no currently available spacecraft propulsion systems capable of using this trajectory. It has been suggested that some forms of nuclear (fission or fusion based) or antimatter powered rockets would be capable of this trajectory.
More practically, this type of maneuver is used in low thrust maneuvers, for example with ion engines, Hall-effect thrusters, and others. These types of engines have very high specific impulse (fuel efficiency) but currently are only available with fairly low absolute thrust.
Gravity assist
Transfer orbits
Hohmann transfer
Bi-elliptic transfer
Low energy transfer
Orbital inclination change
Constant-thrust trajectory
Rendezvous and docking
Orbit phasing
Space rendezvous and docking
See also
External links
|
|